
DETERMINATION OF MODAL RESIDUES AND RESIDUAL FLEXIBILITY

FOR TIME-DOMAIN SYSTEM REALIZATION

K. F. Alvin*

Sandia National Laboratories, Albuquerque, NM 87185

and L. D. Peterson†

University of Colorado, Boulder, CO 80309

Abstract

A linear least-squares procedure for the determination of modal residues using time-domain system

realization theory is presented. The present procedure is shown to be theoretically equivalent to residue

determination in realization algorithms such as the Eigensystem Realization Algorithm (ERA) and Q-

Markov COVER. However, isolating the optimal residue estimation problem from the general realization

problem affords several advantages over standard realization algorithms for structural dynamics identifi-

cation. Primary among these are the ability to identify data sets with large numbers of sensors using small

numbers of reference point responses, and the inclusion of terms which accurately model the effects of

residual flexibility. The accuracy and efficiency of the present realization theory-based procedure is dem-

onstrated for both simulated and experimental data.
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I.    Introduction

Research in structural identification in recent years has lead to a proliferation of algorithms based upon

system realization theory1. These “modern” system identification techniques2-4 have important direct ap-

plications to structural control, such as identification and order reduction of input-output models for robust

control and adaptive on-line identification for nonlinear systems control. These algorithms all realize a

model by minimizing some measure of the difference between the measured and reconstructed discrete-

time impulse response functions, heretofore referred to as Markov parameters. In contrast to many classi-

cal modal identification techniques, the system realization algorithms are time domain techniques and are

generally applicable to multiple-input multiple-output (MIMO) measured data systems.

These algorithms have arguably attracted the most attention for their use in modal test data analysis

and reduction for identification of structural parameters5-6. There are a number of reasons for this. First,

these methods are fairly simple to understand and implement, requiring only standard matrix manipulation

and numerical analysis functions such as those available in MATLAB. Secondly, these methods are found-

ed on sampled data systems theory, which is directly applicable to inexpensive microprocessor-based data

acquisition systems. Finally, system realization theory offered a simplification of the modal identification

process by providing a clear indication (at least ideally) of dynamic order and by unifying the pole identi-

fication and residue estimation problems into a single step analysis. In other words, these methods were

powerful tools at the right time; practically a “cookbook” approach for engineers, including those unfa-

miliar with existing modal parameter identification methods and research.

These popular realization algorithms have, however, lacked the practical capabilities inherent in many

standard modal identification software packages. Although these packages use some multiple reference

time domain identification techniques, such as Polyreference7, they also feature separate treatment of pole

identification and residue estimation, and the capability to estimate residual flexibility and inertia which
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improve model reconstructions. By contrast, ERA and other system realization theory-based techniques8

identify simultaneously the poles and residues in a unified model, and do not generally provide for the

modeling of residual effects. Furthermore, many researchers have noted problems in achieving highly ac-

curate reconstructions of some types of modal data using discrete time-domain realization algorithms,

which has lead, among other things, to the development of frequency domain-based realization

techniques9,10 and residue re-estimation11,12.

The purpose of this paper is to develop additional practical capabilities for modern time domain real-

ization-based algorithms (such as ERA) through system realization terminology. As such, we intend the

present paper to provide a natural complement to existing system realization literature. Our approach is

based on a time domain least squares estimation of the modal residues and residual flexibility, given a prior

identification of the pole information (i.e. frequencies and damping rates) and the modal participation fac-

tors of the system inputs. That is, for the discrete-time state space model

(1)

our approach determinesC andD given thatA andB have been identified in a prior analysis, using perhaps

a subset of the measured response functions. We will show how this estimation is consistent with, and re-

lated to, the residue estimation implicit in existing system realization algorithms. The present procedure

also provides a purely time-domain alternative to the approach of re-estimating of the mode shapes in the

frequency domain using the measured frequency response functions11,12.

To this end, the paper is organized as follows. In Section II, the time domain-based system realization

theory and procedure is presented. For reasons of clarity and conciseness, only the ERA procedure is de-

tailed. In Section III, a procedure for optimally computing the mode shape matrixC using a linear least-

squares solution withA andB from Eqn. (1) is detailed using system realization theory, and its relationship

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( ) Du k( )+=
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to the ERA computation ofC is examined. In Section IV, the present mode shape estimation procedure is

utilized to develop three useful generalizations of ERA for identification of structural dynamic models.

Finally, Section V applies the present procedure to a very realistic simulated data example, and to exper-

imental data. Conclusions are offered in Section VI.

II.    Review of Time Domain System Realization Procedure

We begin by presenting the governing equations of motion for structural dynamics in their usual forms.

The response of a structure to a set of forces or inputsu(t) is usually modeled as a spatially discretized

second order matrix differential equation of the form:

(2)

whereM is the mass matrix,D is the damping matrix,K is the stiffness matrix, and  is the force influence

matrix. The vectorq(t) includes all the physical degrees of freedom (DOF) of the model. If we define the

n associated normal modes  of Eqn. (1) according to:

(3)

(4)

then the structural model can be placed into the first order modal state-space form:

(5)

in whichy(t) is a vector of measured responses, and the modal state-space matrices are given by:
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(6)

in which , , and  are the output displacement, velocity and acceleration location influence ar-

rays, respectively.

Because all experimental vibration data is sampled in time, all time domain linear system realization

procedures begin from the presumption that a finite order discrete state-space model of the system exists

of the form:

(7)

in whichk is the time sample index. The procedure by which Eqn. (5) is sampled to lead to Eqn. (7) must

be done carefully to avoid illconditioning due to the transformation from the continuous(s) plane to the

discrete(z) plane. Likewise, the transformation from a realized model of the form of Eqn. (7) back to the

continuous representation of Eqn. (5) requires careful eigenrotation and mass normalization, as described

in [13].

When the model of Eqn. (7) is used as a predictor, the arbitrary response to an inputu(k) is given by:

(8)

in which the system Markov parametersM(k) are related to the state-space matrices by

(9)

All state-space time domain realization methods attempt to find the state space matricesA, B, C, D from

Aη
0 I
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measurements of the sequenceM(k). This is the process known assystem realization.

The essential considerations in system realization are the selection of the model order (it is presumed

that the model form is correct) and the determination of the state space parameters from a minimization of

some prediction error. For ERA, the prediction error is defined in terms of a Hankel matrix of the Markov

parameters, as defined by:

(10)

The ERA realization finds the linear least squares solution to minimize the error in the shift in the Hankel

matrix of the system model and the data according to:

(11)

in which

(12)

If the Hankel matrix is formed from the data, then the factors  and  are obtained from a singular

value decomposition (SVD) of the  Hankel matrix according to:

(13)

The model order is selected (in principle) by examining the numerical rank of . From this, the sys-
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tem realization problem is solved by:

(14)

Reference [14] discusses the computationally more efficient approach of factoring  instead

of  to obtain the factors of Eqn. (13). In this case, it is more computationally efficient to calculate

the factors using a symmetric eigensolver in place of the SVD. By only computing the largest  eigen-

values and vectors of the Hankel matrix product, it is possible to determine realizations using very large

values ofr ands without calculating the entire spectral decomposition.

III.    Time Domain Residue Estimation

Using the terminology consistent with system realization theory and outlined in Section II, we now

develop the time domain residue estimation as follows.

A.     Least-Squares Solution for Residues

Suppose the state space matricesA andB have been determined from a data set using, for example,

ERA/DC or Q-Markov COVER. Then, using Eqn. (9), we have

(15)

Hence,
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(16)

where

(17)

The least squares solution forC using Eqn. (16) is given by

(18)

The solution is well-defined as long as , wheren is the system order (dimension ofA). Note that the

solution forD, that is

(19)

holds under the present theory, so long as additional terms, such as residual flexibility, are not added to

the problem.

The implementation of Eqn. (18) is equally straightforward. This is because we can utilize the singular

value decomposition of  used in the previous analysis to realizeA andB in order to determine

, viz.

(20)
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B.     Relationship to Residue Estimation in ERA

As reviewed in Section II, in ERA the solution forC is given by

(22)

where  and  is the generalized observability matrix, which is realized from the sin-

gular value decomposition of the measured Hankel matrix , viz.

(23)

Then, from Eqn. (22) we have

(24)

Thus, comparing Eqn. (18) and Eqn. (24), the new least squares solution forC is fully consistent with the

system realization theory-based residue determination. The fundamental distinction is that the ERA solu-

tion for C is optimal for the “realized” Markov parameters; that is, the approximated Markov parameters

as expressed by the realized or approximated Hankel matrix , whereas the least squares solution

is optimal for the actual measured Markov parameters.

IV.    Algorithms Based on Present Theory

A.     An Eigensystem Realization Algorithm using Reference Point Responses (ERA-RP)

The residue estimation algorithm presented in Section II leads to a very useful generalization of ERA

for structural dynamics identification. Since the modes which are identifiable from the data are limited to

those which are disturbable from the system inputs, it is only necessary to include a small number of ref-
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C ElṼr W̃sW̃s
+

ElH̃rs 0( )W̃s
+

= =

M̃ 1:s( ){ }W̃s
+

=

H̃rs 0( )



10

erence point responses from which the same modes are observable. In the case of structural dynamics

when the system is reciprocal (i.e. symmetric mass, stiffness and damping properties), the logical sensor

complements are driving point measurements, that is sensors co-located with the system input degrees of

freedom.

The prime advantage of this approach is that it enables the use of longer data records for the same Han-

kel matrix dimension, or allows the reduction of the Hankel matrix dimension to increase overall compu-

tational efficiency. The use of longer data records is important for obtaining accurate and consistent

frequency and damping estimates from real data. Reducing the size of the Hankel matrix is also important

because the major computational overhead in the system realization procedure is strongly dictated by the

minimum dimension of the matrix.

For example, suppose a typical modal test of a complex structure is performed for the purpose of char-

acterizing the normal modes. If the test is measured using 100 accelerometers and 3 force inputs, an ERA

analysis might utilize Hankel block dimensions of , , leading to a Hankel matrix of size

. On the other hand, a reference point ERA analysis might instead use , ,

for a Hankel matrix of size . In the latter case, the length of the Markov sequence actually

used in the Hankel matrix is slightly greater than in the ERA analysis, but the minimum matrix dimension

is reduced by 70% and the computational effort required to decompose the matrix is reduced by approxi-

mately 97%.

B.     Recomputing Residues after Elimination of Inaccurate Poles

The experimental study in Reference [15] found two main problems with determining structural poles

from time domain realization algorithms:

• Many structural poles converge only after massive overspecification of the model order (nx in Eqn.

(14)). Overspecification of model order, however, engenders additional computational or noise modes

r 50= s 2000=

5000 6000× r 500= s 1600=

1500 4800×
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which should not be retained for subsequent analysis using the identified model.

• Poles which have converged can occasionally split into two nearly repeated (but nonphysical) modes as

model order overspecification is increased to converge other less observable poles.

In view of these pathologies, it is usually necessary to use one or several quantitative model quality indi-

cators (MQI) to detect convergence and discriminate unwanted or unreliable modes from the system real-

ization (e.g. see Reference [12]).

Unfortunately, because all the global mode shapes are extracted through the realization process simul-

taneously, only the mode shapes of the full realization can be considered to be optimal in any sense. If,

however, some modes are not retained for further analysis, the remaining mode shapes cannot be said to

be optimal with respect to either the measured or the realized response parameters. This is often not a prob-

lem if the modes are well-spaced and orthogonal via the measurement points. It can be a serious problem,

however, when computational mode splitting, as described above, occurs in the realization analysis. In this

case, the mode shape information can split between the two nearly identical poles. Hence, when splitting

is detected and one pole is removed from the modal set, important mode shape information is also lost.

The application of the linear least-squares solution forC is straightforward in this case. Simply per-

form the system realization analysis to obtainA, BandC in their decoupled modal form. Then, after com-

puting various MQI and removing unreliable poles fromA andB, C is recomputed using Eqn. (18). It

should be noted that the generalized controllability matrix  must be recomputed using the reducedA

andB matrices, rather than using the singular values and vectors of the Hankel matrix as in Eqn. (21). This

is not a significant computational burden, however, as powers ofA are inexpensive to compute in the de-

coupled block modal form, and the largest matrix inverse operation is of the order of the retained modes

(which is relatively small in most instances).

Ws
˜
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C.     Inclusion of Residual Flexibility Terms

One serious deficiency of the discrete-time state space model form common to ERA and other algo-

rithms is that it cannot always account for the residual flexibility effects of modes outside the measurement

bandwidth. In particular, when using velocity sensors or accelerometers (arguably the most popular trans-

ducer types for modal testing), the modes above the measurement bandwidth contribute a sum term pro-

portional to the Laplace termss ands2, respectively (see [12] and [16]). Such terms cannot be properly

expressed in the discrete-time state-space model form, however, even though their influence is captured

in the measured FRFs (and thus the Markov parameters).

One possible corrective approach is to compute a residual flexibility term by fitting the trend of the

frequency domain error between the measured FRF and its model-based reconstruction. This approach is

generally effective but ignores the weak coupling at all frequencies between the contribution of the iden-

tified modes and residues and the residual flexibility. The result also mixes least-squares time-domain and

frequency domain computations, obscuring the optimality criterion of the complete model response.

The present linear least-squares algorithm for estimating mode shapes of the system realization is eas-

ily extended to include the residual flexibility contribution in a consistent manner. Starting from the proper

expression of the discrete FRF including residual terms, we have12

(25)

whereF is the residual flexibility matrix andp is the differentiation order of the sensor type with respect

to displacement (i.e.p=1 for velocity,p=2 for acceleration). Here the Laplace terms has been evaluated

along the frequency axis  at the discrete frequency values , where  andk,

N, and  are the sample index, total number of samples and sampling rate, respectively.
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Taking the inverse discrete fourier transform (IDFT) of Eqn. (25) lead to the following relationships

(26)

where  are the real-valued IDFT coefficients of the discrete function

(27)

evaluated at

(28)

The order of values fork given in Eqn. (28) depends on the numerical algorithm for computing the IDFT;

the above ordering is consistent with that used for the inverse fast Fourier transform in MATLAB17. The

time-domain coefficients  of the residual term are essentially normalized Markov parameters of the

sum contribution of the modes above the measurement bandwidth to the estimated FRFs. Figure 1 shows

the coefficients ofs ands2 for a small sample record with unit sample time. Using this result, we can then

form the linear least-squares problem
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(29)

where  is the  identity matrix,m are the number of inputs, and

(30)

The solution of Eqn. (29) is then

(31)

Note that whenF and its coefficients are dropped from Eqn. (29), the solutions forC andD are given by

Eqn. (16) and Eqn. (19), respectively.

The above formulation can often lead to an illconditioned matrix due to the mixture of continuous and

discrete frequency domain terms. In order to avoid these problems, we replace  in Eqn. (27) andF in

Eqn. (29) by frequency-normalized counterparts

(32)

Then the estimated term  is multiplied by  to obtain the correct residual flexibility term consistent

with the continuous equations of motion.
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V.    Applications and Examples

A.     Numerical Example using Modal Test Simulator

In order to properly understand the behavior of any system identification algorithm, it is important to

perform simulations using data which is highly characteristic of the actual data the algorithm will ultimate-

ly be applied to. Often, in time domain system identification research, this realism is limited to the addition

of gaussian noise to Markov parameters of displacement outputs, which are generated in the time domain

by the discretized system equations. Unfortunately, this approach neglects the process by which Markov

parameters are usually obtained in testing; that is, frequency domain FRF estimation of acceleration data

with signal conditioning, ensemble averaging and digital signal processing. The signal processing and re-

sidual flexibility effects engendered can be far more significant on the performance of system realization

algorithms than the level of noise which is typically encountered, at least in controlled modal testing en-

vironments. Therefore, a modal testing simulator was developed which includes all of the aforementioned

effects, in addition to assumed measurement noise and burst random excitation.

Figure 2 shows a planar truss example. The model includes 36 unconstrained DOF, 18 acceleration

sensors and 3 externally applied force inputs; 3 of the sensors are collocated with the 3 inputs. The modal

testing simulator was used to generate the FRFs for all 54 input-output pairings. The simulator used 8192

samples per ensemble, sampled at 1000 Hz with anti-alias filtering set at 400 Hz. The FRFs were obtained

using 10 ensemble averages and 1% noise was added to the measurements of the forces and accelerations.

The first stage of the time-domain system realization process consists of the estimation of the reliable

system poles. For this example, the 3 driving-point (i.e. collocated output) measurements were retained as

reference responses for a total of 9 FRFs. An efficient form of ERA14 was used with Hankel block dimen-

sions ofr=300 ands=2000 for total data matrix dimension of . If all response measurements900 6000×
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had been included in the data matrix, the dimension would have been . The order of the ERA-

estimated model was varied from 50 to 100 states and the convergence of various MQI were studied. The

final model order chosen was , for a nominal set of 26 modes. Of these, 3 modes (6 complex

poles) were judged as inaccurate or unreliable and thus were removed from the modal set. A comparison

of the retained modes to those of the exact model are shown in Table 1.

The second stage of the time-domain system identification consisted of using the present mode shape

estimation algorithm to obtain mode shapes for the full set of 18 measured accelerometers. For the least-

squares estimation, the first 2000 Markov parameters we used, consistent with the column dimension of

the Hankel matrix used for the pole estimation. Figures 3 and 4 show the FRF reconstructions using the

retained set of ERA modes together with the full mode shapes estimated using Eqn. (18). Before proceed-

ing, we make the following observations.

First, the transfer FRF shown in Figure 4 cannot be obtained from the ERA analysis alone, as the Mark-

ov parameters for this input-output pair were not included in the Hankel matrix. That is, although the ERA-

derived mode shapes did not include this response location, they were effectively estimated using the

present procedure. Second, because we chose to eliminate 3 modes of the ERA realization, it was also use-

ful to reestimate the mode shapes for the reference point responses, as the ERA mode shapes were extract-

ed simultaneously with the inaccurate modes. In this particular case, because the inaccurate poles were not

closely coupled with any of the retained poles, the original ERA mode shapes and the re-estimated mode

shapes at the reference points were essentially identical.

Finally, other than the resonance which was not identified at approximately 312 Hz, the reconstructed

FRFs are highly accurate at the resonance peaks. The zeros of the FRFs, however, show varying degrees

of error, particularly the driving point response. These errors are due to the exclusion of a residual flexi-

bility term in the ERA model and in the new mode shape estimation via Eqn. (17). If, however, we include

5400 6000×

nx 52=
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a term to model residual flexibility, as in Eqn. (31), the reconstruction is significantly improved, as shown

in Figure 5. Further improvement at low frequency could possibly be obtained by changing the number of

time points used, or by applying constraints to Eqn. (25). The accuracy of the estimated mode shapes from

Eqn. (18) and Eqn. (31) with respect to the exact mode shapes of the example model is shown in the last

two columns of Table 1, in terms of the modal assurance criteria (normalized vector correlation). While

the mode shape estimate without including the residual term is nearly exact, there is an improvement in

the mode shape by simultaneously estimating the residual flexibility. This result is consistent with the ex-

istence of a weak coupling between the two response contributions.

B.     Application to Experimental Data

Although the preceding numerical example was realistic via use of the modal testing simulator, it is

often helpful to verify the accuracy accrued by the curve fitting procedure through its application to actual

experimentally measured data. Figure 6 shows a photograph of the three-dimensional cantilevered truss

structure tested. The modal testing used one force input and 61 accelerometers (including a driving point

locations), with a sampling frequency of 500 Hz and 50 ensemble averages.

As in the numerical example, the poles were estimated using ERA with the single driving point mea-

surement; after selecting =100 (50 modes), 28 modes were retained for the final model. The 61 response

measurements were then re-estimated to yield the desired mode shapes and residual flexibility. A repre-

sentative transfer FRF and the driving point are shown in Figures 7 and 8. One important lesson learned

with this data was that it was important to include the last 20 time samples of the impulse response in the

least squares equation in order to obtain good estimates of the residual flexibility. This is because of the

magnitude increase of  as  in Figure 1.

nx

M
sp k N→
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VI.    Conclusions

A linear least-squares mode shape estimation algorithm using time domain system realization theory

has been presented. The present procedure enhances existing time domain system realization algorithms

such as ERA, ERA/DC and Q-Markov COVER by adding the ability to compute (or reestimate) global

mode shapes when performing reference point-based pole estimation and unreliable pole elimination. Fur-

thermore, the procedure can be generalized to estimate residual flexibility terms which cannot be modeled

within the discrete state space form. These capabilities have been demonstrated via numerical and exper-

imental data.
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Table 1: Accuracy of Identified Modes using RP-ERA with and without Residual Flexibility

Mode # fexact (Hz) fident (Hz) Error%
MAC using

ERA/RP

MAC using
ERA/RP w/

Res. Flex.

1 23.062 23.065 0.0113 1.0000 1.0000

2 54.700 54.700 0.0011 1.0000 1.0000

3 81.566 81.566 0.0004 1.0000 1.0000

4 92.457 92.457 0.0003 1.0000 1.0000

5 132.26 132.26 0.0005 1.0000 1.0000

6 162.94 162.94 0.0028 0.9999 1.0000

7 171.20 171.20 0.0002 1.0000 1.0000

8 205.43 205.43 0.0002 1.0000 1.0000

9 235.15 235.15 0.0006 1.0000 1.0000

10 237.93 237.93 0.0003 1.0000 1.0000
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Figure 1: Time Domain Representation of the Laplace Termss and s2
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Figure 2: 2-D Truss Numerical Example
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Figure 3: Driving Point FRF Reconstruction

0 50 100 150 200 250 300 350 400
-200

0

200

Frequency, Hz

P
ha

se
, d

eg

Frequency Response (Bode Diagram)

0 50 100 150 200 250 300 350 400
-40

-20

0

20

40

60

80

Frequency, Hz

M
ag

ni
tu

de
, d

B



25

Figure 4: Transfer FRF Reconstruction
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Figure 5: Driving Point FRF with Residual Flexibility
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Figure 6: Photograph of Truss Modal Testing
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Figure 7: Driving Point FRF and Reconstruction with Residual Flexibility for Truss Tower
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Figure 8: Transfer FRF and Reconstruction with Residual Flexibility for Truss Tower
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